skip to main content


Search for: All records

Creators/Authors contains: "Gel, Yulia R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Networks allow us to describe a wide range of interaction phenomena that occur in complex systems arising in such diverse fields of knowledge as neuroscience, engineering, ecology, finance, and social sciences. Until very recently, the primary focus of network models and tools has been on describing the pairwise relationships between system entities. However, increasingly more studies indicate that polyadic or higher-order group relationships among multiple network entities may be the key toward better understanding of the intrinsic mechanisms behind the functionality of complex systems. Such group interactions can be, in turn, described in a holistic manner by simplicial complexes of graphs. Inspired by these recently emerging results on the utility of the simplicial geometry of complex networks for contagion propagation and armed with a large-scale synthetic social contact network (also known as a digital twin) of the population in the U.S. state of Virginia, in this paper, we aim to glean insights into the role of higher-order social interactions and the associated varying social group determinants on COVID-19 propagation and mitigation measures.

     
    more » « less
    Free, publicly-accessible full text available January 2, 2025
  2. Graph neural networks (GNNs) have demonstrated a significant success in various graph learning tasks, from graph classification to anomaly detection. There recently has emerged a number of approaches adopting a graph pooling operation within GNNs, with a goal to preserve graph attributive and structural features during the graph representation learning. However, most existing graph pooling operations suffer from the limitations of relying on node-wise neighbor weighting and embedding, which leads to insufficient encoding of rich topological structures and node attributes exhibited by real-world networks. By invoking the machinery of persistent homology and the concept of landmarks, we propose a novel topological pooling layer and witness complex-based topological embedding mechanism that allow us to systematically integrate hidden topological information at both local and global levels. Specifically, we design new learnable local and global topological representations Wit-TopoPool which allow us to simultaneously extract rich discriminative topological information from graphs. Experiments on 11 diverse benchmark datasets against 18 baseline models in conjunction with graph classification tasks indicate that Wit-TopoPool significantly outperforms all competitors across all datasets.

     
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  3. Free, publicly-accessible full text available June 27, 2024
  4. Free, publicly-accessible full text available June 27, 2024
  5. Free, publicly-accessible full text available June 25, 2024